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Abstract: Time-series statistical pattern recognition is of prime importance in statis-
tics, especially in quality control techniques for manufacturing processes. A frequent
problem in this application is the complexity when trying to determine the behaviour
(pattern) from sample data. There have been identified standard patterns which are
commonly present when using the X chart; its detection depends on human judge-
ment supported by norms and graphical criteria. In the last few years, it has been
demonstrated that Artificial Neural Networks (ANN’s) are useful to predict the type
of time-series pattern instead of the use of rules. However, the ANN control parame-
ters have to be fixed to values that maximize its performance. This research proposes
an experimental design methodology to determine the most appropriate values for
the control parameters of the FuzzyARTMAP ANN such as: learning rate (β ) and
network vigilance (ρa, ρb, ρab) in order to increment the neural network efficiency
during unnatural pattern recognition.
Keywords: Statistical Process Control, Control Charts, Artificial Neural Network
(ANN), FuzzyARTMAP, and Factorial Design.

1 Introduction

To preserve product quality an accurate knowledge of the production process is necessary. This
requires the automation of quality control systems and the use of control charts as introduced by Dr.
Walter A Shewart to observe the behaviour of the manufacturing process.

Control charting is the key point in Statistical Process Control (SPC) implementation. The correct
application of these Control Charts requires satisfying statistical assumptions such as the independence
of the random variable and symmetry in its probability distribution [1]. If these assumptions are met then
the use of Control Charts is correctly applied since the Upper and Lower limits are established as ±3σ
from the global mean of the X random variable. In figure 1, the probability distribution of X is shown
under both circumstances with symmetry and without symmetry.
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Figure 1: X Symmetry importance to establish the control limits

The power of an X chart is based on its capacity to differentiate special and natural causes of varia-
tion; however, important disadvantages on the use of this form of quality control exist because traditional
control chart with control limit can only indicate when to seek a disturbance and not where and what to
look for, generating then hurried and sometimes mistaken diagnostics [2].

Trying to know where and what has happened in the manufacture process may be possible by using
pre-established rules in combination with human judgment. These rules are commonly referred to as:
points outside the control limits, run of consecutive points, non-random patterns and points near the
control limits [1]. The efficiency of the use of these rules has been investigated and it has been found
that is not enough to recognise the type of statistical pattern ([3], [4], [5], [6], [7], [8], [9], [10], [11],
[12]), which would give the correct answer to the questions of where and what to look for. This is why
researchers suggest the use of the neural networks as an alternative approach to identify variation data in
statistical patterns [4].

A neural network is a soft computing system [25], which consists of a number of elements (nodes)
strongly interconnected that have the ability to process information as a result of a process of dynamic
work of those nodes and connections to external points to the network [13]. Neural networks are efficient
in recognizing data variation [2], [5], [14], especially in asymmetric probability distributions [2]. Among
the existing neural networks, the Fuzzy ARTMAP Network is widely recognized due to its on-line and
fast learning capability for pattern recognition tasks [15], [16].

For many processes of manufacture, the parameters can be obtained with neural network, with ex-
ception in many complex biotechnological processes. In these cases, [23] proposed the use of grey-box
models which combine a priori knowledge expressed in terms of a white-box model, with a black-box
model such as neural network, and [24] developed a MatlabrToolbox for the construction of grey-box
neural network models.

This paper is organised as follows: In the next section an introduction to the ART theory is given
first followed by the standardisation and coding algorithm for the input data in the neural network using
the Monte Carlo method. Section 3 describes the statistical pattern generation. Training and testing
results are provided in Section 4. Section 5 describes the factorial design for the selection of the network
parameters as well as the experimental results. An analysis for the pattern variation findings is given in
Section 6 while Conclusions and Future work are given in Section 7.

2 Adaptive resonance theory

The Adaptive Resonance Theory (ART) [17] was developed by Stephen Grossberg and Gail Carpen-
ter at Boston University to solve the called stability-plasticity dilemma. That is, the system is sensitive
to novelty capable of distinguishing between familiar and unfamiliar events (plastic) and still remains
stable. Different model variations have been developed to date based on the original ART-1 algorithm
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for binary input patterns [18], ART 2-A for analogue and binary input patterns [19], and ART 3 based on
chemical transmitters. Supervised learning is possible through ARTMAP [20] that uses two ART mod-
ules and its variants, Fuzzy ARTMAP [16], Gaussian ARTMAP [21] and ART-EMAP even though there
are many other variants adapted for specific applications [22]. In the next section a brief explanation of
the mechanics of ART-1 and Fuzzy ARTMAP is given.

2.1 ART-1

The ART-1 architecture consists of two parts: attentional subsystem and orienting subsystem as
illustrated in figure 2. The attentional subsystem is made up of two layers of nodes F1 and F2. In an
ART network, information in the form of processing-element output reverberates back and forth between
layers. If a stable resonance takes place learning or adaptation can occur. On the other hand, the orienting
subsystem is in charge of resetting the attentional subsystem when an unfamiliar event occurs.

Figure 2: Basic ART Architecture

A resonant state can be attained in one of two ways. If the network has learned previously to recog-
nise an input vector, then a resonant state will be achieved quickly when that input vector is presented.
During resonance, the adaptation process will reinforce the memory of the stored pattern. If the input
vector is not immediately recognised, the network will rapidly search through its stored patterns looking
for a match. If no match is found, the network will enter a resonant state whereupon the new pattern will
be stored for the first time. Thus, the network responds quickly to previously learned data, yet remains
able to learn when novel data is presented, hence solving the so-called stability-plasticity dilemma. The
activity of a node in the F1 or F2 layer is called short-term memory (STM) whereas the adaptive weights
are called long-term memory (LTM). Gain controls handle the discrete presentation of the input signals.
A vigilance parameter measures how much mismatch is tolerated between the input data and the stored
patterns, which can be used to control the category coarseness control of the classifier.

2.2 Fuzzy ARTMAP

In the Fuzzy ARTMAP (FAM) network there are two modules ARTa and ARTb and an inter-ART
module Map− f ield that controls the learning of an associative map from ARTa recognition categories
to ARTb categories. This is illustrated in figure 3.

The Map field module also controls the match tracking of ARTa vigilance parameter. A mismatch
between Map field and ARTa category activated by input Ia and ARTb category activated by input Ib
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increases ARTa vigilance by the minimum amount needed for the system to search for, and if necessary,
learn a new ARTa category whose prediction matches the ARTb category. The search initiated by the
inter-ART reset can shift attention to a novel cluster of features that can be incorporated through learning
into a new ARTa recognition category, which can then be linked to a new ART prediction via associative
learning at the Map− f ield.

Figure 3: FuzzyARTMAP Architecture

A vigilance parameter measures the difference allowed between the input data and the stored pattern.
Therefore this parameter is determinant to affect the selectivity or granularity of the network prediction.
For learning, the FuzzyARTMAP has 4 important factors: Vigilance in the input module (ρa), vigilance in
the output module (ρb), vigilance in the Map field (ρab) and learning rate (β ). These were the considered
factors in this research.

2.3 Standardization and codification

The use of the neural network requires two important mathematical considerations, which are the
standardization and the codification of the input data [2]. The training and testing data needs to be pre-
processed in these two stages. The standardization means that the data have to be linearly transformed
from data with mean (µ) and standard deviation (σ ) into data with µ = 0 and σ = 1 using equation 1, as
a result, the sample data is within the interval (-3.9, +3.9).

Yt = (
xt −µ

σ
) (1)

where:
xt = sample value at sampling time t.
Yt = standardized value from xt .
µ = process mean.
σ = process standard deviation.

The xt data are generated by a process simulator of Monte Carlo, according to equation 2

xt = µ +nt +dt (2)

where:
µ = process mean.
nt = common cause variation at sampling time t.
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dt = special disturbance at time t (dt = 0 when the pattern is natural).

Shift.
dt = ud (3)

where:
u = parameter to determine the position of shifting (0: before shifting; 1: after shifting).
d = displacement of mean in terms of σ .

Trend slope.
dt = st (4)

where:
s = trend slope in terms of σ .
t = sampling time.

On the other hand, with the codification of Yt the variation interval of [0,1] is obtained, which is
a requirement for the neural network operation that reduces the effects of common causes of variation
(noise) [2]. The codification of xt considered the interval [-7.625, 7.625], whose range is greater to the
expected Yt range.

3 Pattern data generation

A specific value xt of sample data is obtained from the sum of three mathematical considerations:

• Global and historical effect (µ).

• Natural variation effect (nt).

• Disturbance variation effect (dt).

Mathematically, equation 2 expresses this situation. In terms of industrial quality, these effects can
be thought of as the global and historical mean obtained from experience (i), thought of as data variation
which is unavoidable and it is always present (ii); and finally, the data variation due to disturbances which
is associated to special causes that may cause the process to be out of statistical control (iii).

When a sample data has only influence on natural causes of variation, then nt > 0 and dt = 0, and
the pattern data will be natural. On the other hand, if dt > 0, then the pattern data will be unnatural, and
it means that a cause of special variation has occurred in time t. It must be noticed that 0 < nt < dt for
any type of special pattern data. If the dt value is very similar to nt then neural network output can be
misleading between a special pattern and a natural one.

3.1 Natural Pattern

The data used for this pattern were generated using the Monte Carlo simulator using equation 2 with
µ = 0 and σ = 1. An example of this type of pattern is shown in figure 4. The graph data comes from
a time-series of X that did not consider any trend or shift in the global mean and with data distribution
randomly assigned.

3.2 Shift Pattern

Data used for either downward shift or upward shift shows two data set separated by an abrupt
change as shown in figure 5. This occurs because the reference mean also changes. This can be positive
or negative and its magnitude depends on the special variation cause in the manufacturing process.
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Figure 4: Natural Pattern

Figure 5: Shift Patterns (a)Upwards (b)Downwards

3.3 Trend Pattern

The type of pattern can be distinguished at a glance due to its upward or downward trend. In terms
of mathematically what happens is that for any Xt in the data series (where t is not the last data), there
will be points in time t +1, t +2, t +3, . . . , t +n of higher magnitude (upward trend) or lower magnitude
(downward trend). Through linear regression is always possible to find out the slope magnitude which is
also the magnitude of the effect that caused the special variation. This type of pattern can be observed in
figure 6.

Figure 6: Trend Patterns (a)Upwards (b)Downwards

4 Training and testing

Five pattern types with diverse effects of special variation as mentioned above were studied. Table 1
shows the corresponding information indicating the used values for dt and the output binary code used
during the training and testing phase. The number of patterns for the input vector was 51 for training and
1,350 for testing.

5 Factorial design

The experimentation required 120 tests based on 8 runs and 3 replicates. The information for the
experimental design is shown in table 2. An analysis of variance from multiple experiments revealed the
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Table 1: dt values considered for each pattern type and output vector code

Pattern Type dt Code
Natural 0.0 1 0 0 0 0

Upward shift +0.5,+1.5,+2.5,+3.5 0 1 0 0 0
Downward shift −0.5,−1.5,−2.5,−3.5 0 0 1 0 0
Upward trend +0.1,+0.2,+0.3,+0.4 0 0 0 1 0

Downward trend −0.1,−0.2,−0.3,−0.4 0 0 0 0 1

significant factors of operation for the neuronal network. The results are given in section 5.1 and in all
cases, there were no violations to the normality and independence of the residuals ei, j.

Table 2: Experimental Design

5.1 Experimental results

The results lead to the identification of the factors that most influence the prediction efficiency of the
neuronal network (characterization). Results also showed the determination of the best combination for
the factor levels (relative optimization) that generated higher efficiencies. It was observed that at the level
of significance of the experimental test, all the factors influence in the efficiency of the neural network.
The relative optimal levels are shown in table 3.

The efficiency of the neural network (η) considering the factors and levels indicated in table 3 are
given in table 4 and figure 7. The experimental test validation was carried out with 17,000 data samples
created by simulation.
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Table 3: ANN Factors and optimal levels

Factors Optimal Levels
A (ρa1) 0.8
B (ρab1) 0.2
C (β1) 1.0
D (ρb1,2) 0.8
E (ρab2) 0.2
F (β2) 0.2
G (ρa2) 0.6

Table 4: Neural network efficiency (η)

Pattern Data η
Natural 30 %

Upward shift 93.5 %
Downward shift 96.4 %
Upward trend 99.8 %

Downward trend 96.4 %

6 Analysis of pattern variation

There is a direct relationship between the value dt assumed by each special pattern data (table 1), the
value of the standard deviation (σ ) of the sample data and the efficiency of the neuronal network (η).
table 5, shows this situation. In all cases, while the absolute value of dt increases the corresponding σ
and η also increases. A polynomial regression analysis was carried out (σ and dt are the independent
variables and η the dependent variable). The coefficient of correlation was high and typically above
89% (see table 6). This fact indicates that as dt approaches nt and σ is low then the neural network may
predict a wrong pattern. On the opposite, with higher values of dt and σ the neural network prediction
efficiency increases.

Table 5: Relationship between dt , standard deviation (σ ) and the neural network efficiency (η).

Pattern Type Parameters Values
Upward shift η 76.0% 86.8% 92.7% 93.5%

Downward shift η 42.4% 77.6% 88.2% 96.4%
dt ±0.5 ±1.5 ±2.5 ±3.5
σ 1.009 1.237 1.620 2.089

Upward trend η 22.0% 25.0% 73.8% 99.8%
Downward trend η 79.1% 82.8% 95.8% 96.4%

dt ±0.1 ±0.2 ±0.3 ±0.4
σ 0.539 0.670 0.862 1.080
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Figure 7: Neural network efficiency (η) vs dt

Table 6: Equations for the multiple linear regressions

Pattern Type Multiple Regression R2

Upward shift Efficiency = 107.7+21.4(dt)−42.5(σ) 99.8
Downward shift Efficiency = 132.2−61.0(dt)−119.7(σ) 99.3
Upward trend Efficiency = −121.5−294.1(dt)+317.5(σ) 96.0

Downward trend Efficiency = 77.3−92.3(dt)−15.0(σ) 89.21

7 Conclusions

This investigation confirms the obtained results from previous studies with respect to the efficiency of
the neural network in the recognition of statistical pattern data. It is also demonstrated, that as the effect
of the special cause approaches close to zero, the efficiency decreases because the standard deviation
of these data is smaller or equal to 1, i.e., the standard deviation of a data set from a natural pattern.
Another result from this investigation is the definition of the most appropriate parameter values for the
FuzzyARTMAP that facilitated the use of this neuronal network. It is important to mention that in this
application the efficiency of the network for the control chart pattern recognition depends greatly on the
dt and σ values.

Future work has been envisaged to look at the dt and σ values in the confusion zone and their
relationship with the sampling window size in order to analyse the neural network behaviour in this
zone.
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