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Abstract The flexible jobshop scheduling problem permits
the operation of each job to be processed by more than one
machine. The idea is to assign the processing sequence of
operations on the machines and the assignment of operations
onmachines such that the system objectives can be optimized.
The assignment mentioned is a difficult task to implement on
real manufacturing environments because there are many
assumptions to satisfy, especially when the amount of work
is not constant or sufficient to keep the manufacturing process
busy for a long time, causing intermittent idle times. An
estimation of distribution algorithm-based approach coupled
with a simulationmodel is developed to solve the problem and
implement the solution. Using the proposed approach, the
shop performance can be noticeably improved when different
machines are assigned to different schedules.

Keywords Scheduling . Event-discrete simulation .

Estimation of distribution algorithm . Simulation
optimization .Work in process . Flexible jobshop scheduling
problem

1 Introduction

Estimation of distribution algorithms (EDA), introduced by
Mühlenbein and Paaβ [1], have been successfully used to
solve complex combinatorial optimization problems such as
scheduling. Chen et al. [2], Liu et al. [3], and Pan and Ruiz [4]
can be consulted on this issue.

Disadvantages of EDAs such as loss of diversity and
insufficient use of location information of solutions have been
tackled successfully by incorporating other methods such as
genetic algorithms (GAs) during the evolutionary process.
Chen et al. [5] use this approach.

Several works have been done in order to capture the
problem structure with more precision. Advanced probabilis-
tic models, which solve scheduling problems through EDAs,
have been proposed to attempt to integrate higher-order inter-
actions to enhance the solution quality. Wang et al. [6] and
Chen et al. [7] have contributed to research on it.

Flowshop scheduling problem and jobshop scheduling
problem on flexible shops have been studied and solved
through EDAs from an academic perspective. Jarboui et al.
[8] and Zhang and Li [9] are in this category.

Working out real-world scheduling problems has been con-
sidered a priority in the last three decades because the condi-
tions of any service or manufacturing process requires an
appropriate modeling on the most important variables that
affect the performance of the process. The process might have
different scenarios to optimize or different characteristics to
consider in order to solve the scheduling problem, not only the
academic perspective on such things as market conditions,
competitors, information systems, work conditions, setup time,
maintenance, transfering of parts, labor requirements, storage,
shifts, breaks, the process itself. Chan et al. [10], Wadhwa et al.
[11], Chan and Chung [12], and Chan [13] have considered the
real process environment and its flexibility in their approaches
to work out real-world scheduling problems.
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All current research work focuses on the fact that only
one schedule is assigned to all the machines on the shop
floor, but the performance of scheduling is different
under different circumstances; the shop performance can
be improved if different machines are assigned to differ-
ent schedules. For example, the steel doors manufactur-
ing process studied in this research does not require all
machines to be ready at the beginning of the schedule,
because it is extensive and requires time to produce a
complete job. The work content varies greatly at each
step. If all machines are ready at the beginning of the
schedule, it should cause idle times. For this reason and
contrary to current research, this paper presents an alter-
native solution to the scheduling problem from an indus-
trial perspective where the start time for each work shift
is an input variable to consider. We provide a simple
example of the variable mentioned by considering a prob-
lem with four jobs: the four machines shown in Fig. 1. We try
to achieve the minimum idle time possible for eachmachine in
a work shift of 8 h. An alternative schedule, including off-duty
hours for each machine, is proposed in Fig. 2. To the best of

our knowledge, the parameter described has not been devel-
oped through these kinds of algorithms.

In addition, all EDAs that have been used for scheduling up
to this point can be used for service and/or manufacturing
applications. However, in these environments, some assump-
tions studied from an academic approach may not be met. For
example, the assumption that operations cannot be interrupted
is difficult to meet, because there are many reasons to interrupt
operations at any workstation or machine due to failures,
adjustments, incorrect set up, scrap, shutdown, or the sudden
arrival of priority jobs.

In order to avoid the use of theoretical assumptions that can
hardly be met or to try to capture the real operating conditions
on service or manufacturing systems, simulation optimization
is an alternative.

Although there are several commercial simulation lan-
guages that provide optimization tools, to the best of our
knowledge, no current commercial simulation language uses
EDAs as an optimization method.

The approach taken in this study combines the key advan-
tages of both EDAs and simulation. The focus of this study is

Fig. 1 Scheduling example
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to employ simulation with estimation of distribution algorithm
(SEDA) where three probabilistic models are utilized. The
first one generates the processing sequence of operations on
the machines; the second produces the assignment of opera-
tions on machines, and the third obtains the start time for each
work shift.

Although different performance measures have been
considered for optimizing scheduling problems, the work
in process (WIP), as an important output variable on
scheduling problems, has been handled with little depth
through EDAs. This research proposes to build an event-
discrete simulation model and use SEDA as an optimiza-
tion method in a steel doors manufacturing shop where
operations are extensive and diverse and belong to flexible
jobshop configuration. The objective is to generate sched-
ules that can obtain a small amount of WIP as a perfor-
mance measure.

2 Literature review

A discussion about the most current research on scheduling
problems with EDAs is outlined below.

Chen et al. [2] propose guidelines for developing effective
EDAs to solve single machine scheduling problems, particu-
larly the minimization of the total weighted earliness and
tardiness costs. In general, they used an EDAwith an operator
that they call “guided mutation” to generate effective off-
spring. The beginning of their algorithm produces new solu-
tions mainly by genetic operators. After this, they use the
probabilistic model to generate better individuals when the
searching process reaches a more stable state. Therefore,
sampling new individuals periodically differentiates EDAs

from each other because most EDAs generate entirely new
solutions.

Recently, some attempts have been made to combine
EDAs with the traditional crossover and mutation operators
of GAs [14]. Chen et al. [5] use this approach. They employ an
approximate probabilistic model to estimate the quality of
candidate solutions to enable the crossover and mutation
operators to generate more promising solutions. They
work on the permutation flowshop scheduling problem
(PFSP). It is one of the best-known NP-hard (non-determin-
istic polynomial-time) problems. The probabilistic model
used is not a source for generating new solutions but acts as
a fitness predictor for guiding the crossover and mutation
operators to generate better solutions.

Chen et al. [7] also work on PFSPs. They employ two
probabilistic models, while most EDAs do not apply more
than one model. The first model represents the number of
times that any job appears before or at a specific position in
the sequences. This model shows the importance of the jobs in
the sequence and was used in research conducted by Jarboui
et al. [8]. The second model indicates whether any job imme-
diately follows another in the sequences, i.e., this model
indicates the number of times that any job immediately fol-
lows another. In addition, it is important to note that by
combining a genetic-operator approach with a probabilistic
model, the authors were able to avoid the loss of data diversity
which EDAs often demonstrate.

Pan and Ruiz [4] offer an EDA for lot-streaming flowshop
problems with setup times. According to the researchers, in a
traditional flowshop, each job is assumed to be indivisible
and cannot be transferred to a downstream machine
until the whole operation on the preceding machine is
finished. Nevertheless, this is not the case in many practical

Fig. 2 Scheduling alternative
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environments where a job or lot consists of many identical
items. The real contribution is how Pan and Ruiz [4] handle
the setup time concept in their algorithm.

Wang et al. [6] work on the flexible jobshop scheduling
problem (FJSP). The authors proposed a bi-population based
on EDA, which they called BEDA to solve FJSP with the
criterion of minimizing the maximum completion time. In the
BEDA, the population may be divided into two sub-
populations with a splitting criterion, and the two sub-
populations may be recombined as the entire population with
a combination criterion to achieve a satisfactory searching
quality.

All of this current research work uses discrete EDAs. In
these kinds of EDAs, each individual explicitly shows its
information in the sequence of jobs to be processed. The
hybridization between any discrete EDA and any heuristic
method permits obtaining promising solutions. The probabi-
listic models used in all of this current research work are
updated each time a job is assigned in the sequence. This
updating eliminates the possibility of choosing a previous
job, although the authors of this research almost never explic-
itly mention that a modification in the sampling process has to
be carried out. For example, Shim et al. [15] use EDAs for
solving the multi-objective traveling salesman problem. The
authors opined that the sampling mechanism does not consid-
er which city has or has not been included in the route. In
order to get feasible solutions, a refinement operator is
proposed for tackling the inconvenience of the permutation-
based representation.

Although some promising results have been reported by
using high-order interactions in probabilistic models, those
results do not necessarily outperform simple models in dealing
with some real-world hard problems because these complicat-
ed models can only consider a very tiny percentage of variable
interactions in a hard problem [7]. As a result, simulation
optimization is a good alternative to tackle this situation.

The main differences and similarities between current re-
search and this paper are shown in Table 1. In addition, in
Table 2, it details the most important commercial simulation
languages that provide optimization tools.

As we can see from the previous review, to the best of our
knowledge, the industrial perspective has not been thoroughly
considered In addition, EDAs have not been developed for use
as an optimization method for simulation optimization.
Finally, some assumptions that are not necessarily met in
service and/or manufacturing systems are used in all of the
current research.

3 Problem statement

The steel doors manufacturing shop, where operations
are extensive and diverse, belongs to flexible jobshop

configuration. Wang et al. [6] and Yan and Wang [16]
explain the problem formulation for this configuration.

The flexible jobshop scheduling problem FJSP is common-
ly defined as follows: there are n jobs J={J1,J2,…,Jn} to be
processed on m machines M={M1,M2,…,Mn}. A job Ji is
formed by a sequence of ni operations Oi;1;Oi;2;…;Oi;ni

� �

to be performed one after another according to a given se-
quence. The execution of Oi, j requires one machine out of a
set of mi, j given machines Mi, j⊆M. Preemption is not
allowed, i.e., each operation must be completed without inter-
ruption once it starts.

In order to simplify the notations for the flexible jobshop
scheduling problem in this research, it is convenient to

identify the Oi, j by numbers 1,…, N where N :¼ ∑
i¼1

n

ni .

Consequently, the processing time of the operation i on ma-
chine k∈Mi is denoted by ti,k. In addition, the operations set is
established as O.

Let J(i) denote the job to which operation i belongs
and let P(i) be the position of operation i in the se-
quence of operations belonging to job J(i) starting with
one, i.e., P(i)=1 if the operation i is the first operation
of a job. Furthermore, the index set Ik defined by
Ik :={i∈O|k∈Mi} denotes the indices of operations i∈O
that can be processed on machine k. Consequently, there
are |Ik| positions on machine k.

In order to model the assignment of operations to
machines, assignment binary variables xi,k,p for all pk=
1,…, |Ik|, k=1,…,m, i∈O are introduced if xi, k, p=1
means that the operation i is scheduled for position p
on machine k.

Furthermore, Si is defined as the starting time for operation i.
For each job, the corresponding operations have to be

processed in the given order, that is, the starting time for an
operation must not be earlier than the point at which the
preceding operation in the sequence of operations of the
respective job is completed. This constraint is imposed simul-
taneously on all appropriate pairs of operations, aggregated in
the set of conjunctions C given by C∶={(i,j)| i,j∈O:J(i)=
J( j)∧P( j)=P(i)+1}. Consequently, the precedence constraints
are given by

Si þ
X

k∈Mi

XI kj j

p¼1

xi;k;pti;k ≤ S j for all i; jð Þ∈C: ð1Þ

Moreover, each operation has to be assigned to exactly one
position, which is ensured by

X

k¼1

m XI kj j

p¼1

xi;k;p ¼ 1 for all i∈O: ð2Þ
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Additionally, only one operation can be assigned to each
position, due to constraints

X

i∈O
xi;k;p≤1 for all p ¼ 1;…; Ikj j; k ¼ 1;…;m: ð3Þ

The positions on each machine have to be subsequently
filled, that is, an operation is only allowed to be assigned to a

position on a machine if the preceding position is already
filled. This condition is ensured by

X

i∈O
xi;k;p≤

X

i∈O
xi;k;p −1 ð4Þ

for all p ¼ 2;…; Ikj j; k ¼ 1;…;m:

In order to interconnect the machine position variables with
the starting time variables and to enforce a feasible schedule,
non-overlapping constraints are defined by

Si þ ti;k−M 2−xi;k;p−1−x j;k;p
� �

≤S j ð5Þ

for all p=2,…, |Ik|, i≠ j∈Ik, k=1,…,m. If the operations i
and j are assigned to the same machine k for consecu-
tive positions p−1 and p, then the starting time Sj of
operation j must not be earlier than the completion time
Si+ ti,k of operation i. M is a big constant taken sufficiently
large in order to guarantee constraints (Eq. 5) to be valid if at
least one of the machine position variables xi,k,p and xi,k,p−1 is
zero; in other words, operations i and j are not assigned to
consecutive positions on the samemachine, and consequently,

Table 1 EDAs for scheduling

Algorithms

Elements Chen et al. [2]
EA/G

Chen et al. [5]
Self-guided
GA

Chen et al.
[7] eACGA

Jarboui et al.
[8] JEDA

Pan and Ruiz [4] Wang et al.
[6] BEDA

SEDA

Configuration style Single-machine PFSP PFSP PFSP Lot-streaming PFSP FJSP FJSP

Processing times Fixed Fixed Fixed Fixed Fixed Fixed Variable

Assumptions Required Required Required Required Partially required Required Not required

Probabilistic model Univariate Univariate Uni/bivariate Univariate Uni/bivariate bivariate Bivariate

Type of EDA Discrete Discrete Discrete Discrete Discrete Discrete Discrete and
continuous

Hybridization EDA-GA EDA-GA EDA-GA EDA-VNS EDA-VNS EDA-local search EDA-simulation

Populations One One One One One Two One

Objective Weighted earliness,
tardiness costs

Makespan Makespan Total flow time Makespan Makespan Work in process

Simulation Not provided Not provided Not provided Not provided Not provided Not provided Included

Approach Academic Academic Academic Academic Industrial, sequence-
dependent setup
time considered

Academic Industrial, all the
environment
as really it is

PFSP permutation flowshop scheduling
problem

FJSP flexible jobshop scheduling
problem

VNS variable neighborhood search

Table 2 Commercial simulation languages

Optimization tool

Languages Tabu search Genetic algorithms Evolutionary strategies

Simul8® +

SimFlex® +

Simprocess® +

Promodel® +

Arena® +

Quest® +

Extend® +

@Risk® +

AutoMod® +

+ Included

Int J Adv Manuf Technol (2014) 73:3–21 7



a non-overlapping constraint does not have to be taken into
account.

Different starting times for each machine were con-
sidered in this research. Let Tk be the off-duty time for
each machine k. The starting time for the first operation
on each machine must not be earlier than Tk, which is
ensured by

Tk þ Si þ
X

p¼1

xi;k;pti;k ≤ S j for all i∈Ik ; k ¼ 1;…;m: ð6Þ

Let H be the total time in the work shift for the entire
manufacturing process. Consequently, the real work shift R
for each machine k is defined by

Tk þ H ¼ Rk for all k ¼ 1;…;m: ð7Þ

The completion timeCk on eachmachine k is defined as the
total time required to conclude all the operations scheduled,
which is ensured by

maxi∈I k Si þ ti;k
� �

≤Ck for all k ¼ 1;…;m: ð8Þ

We consider to minimizing the work in the process at the
end of each real work shift on each machine, that is, the
difference between the completion time and the real work
shift for each machine, given by

Min WIP ¼
X

k¼1

m

max Ck −Rk ; 0f g ð9Þ

Thus, the problem formulation for the steel doors
manufacturing process is given by

Min WIP ¼
X

k¼1

m

max Ck−Rk ; 0f g

s:t
maxi∈Ik Si þ ti;k

� �
≤ Ck for all k ¼ 1;…;m:

Si þ
X

k∈Mi

XI kj j

p¼1

xi;k;pti;k ≤S j for all i; jð Þ ∈ C :

X

k¼1

m XIkj j

p¼1

xi;k;p ¼ 1 for all i∈O:

X

i∈O
xi;k;p≤1 for all p ¼ 1;…; I kj j; k ¼ 1;…;m:

X

i∈O
xi;k;p≤

X

i∈O
xi;k;p−1 for all p ¼ 2;…; Ikj j; k ¼ 1;…;m:

Si þ ti;k−M 2−xi;k;p−1−x j;k;p
� �

≤S j for all p ¼ 2;…; Ikj j; i≠ j∈I k ; k ¼ 1;…;m:

Tk þ Si þ
X

p¼1

xi;k;pti;k ≤S j for all i∈O; k ¼ 1;…;m:

Tk þ H ¼ Rk for all k ¼ 1;…;m:

Si≥0 for all i∈O:

Tk ≥0 for all k ¼ 1;…;m:

xi;k;p∈ 0; 1f g for all p ¼ 1;…; Ikj j; k∈Mi; i∈O:

H constant

Although the problem formulation for the steel doors
manufacturing shop has been explained above, it includes
assumptions that are not relevant or consistent with the
manufacturing process mentioned. Unfortunately, some of
these assumptions simply cannot be applied in the steel doors

manufacturing process. This situation impedes using EDAs
directly. Some assumptions that are not met are:

1. The machines are assumed to be set up in series. In the
steel door manufacturing process, this is not possible,

8 Int J Adv Manuf Technol (2014) 73:3–21



especially for a layout that does not accomplish such a
configuration.

2. The storage or buffer capacities in between successive ma-
chinesmay sometimes be virtually unlimited. Unfortunately,
this does not happen with the actual manufacturing process.
When the products are physically as large as steel
doors, the buffer space in between two successive
machines has limited capacity, causing blockage. When
this occurs, the job has to remain at the machine,
preventing a job in the queue at that machine from starting
its processing.

3. Any job can be processed at each stage by any machine.
Although some workstations in the steel door
manufacturing process have parallel machines to process
any job on, the impact on performance measures can be
totally different using one machine to another. The main
reason is because there are a limited number of skilled
workers for certain types of doors that use those parallel
machines.

4. Operations cannot be interrupted. There are many
reasons to interrupt the operations at any workstation
or machine such as failures, adjustments, wrong setup,
scrap, and the sudden arrival of priority jobs.

5. Each machine can process only one operation at a time. In
the actual manufacturing process, the cure oven system
acts as a machine, processing more than 100 doors (from
different jobs) at the same time.

6. One kind of machine is available. Normally, when
the jobs have entered the shop floor, they are pro-
duced according to a specific route as in any jobshop
configuration; however, there are working groups

Fig. 4 Fixed values test

Fig. 3 Simulation model’s
assembly department

Int J Adv Manuf Technol (2014) 73:3–21 9



that may not be available due to personnel and shift
scheduling.

7. The time to transfer jobs between machines is not rele-
vant. In the steel doors manufacturing shop, most of the

jobs need to be transferred between machines or worksta-
tions by dollies, platforms, or forklifts in order to continue
the process, and these transfers take time.

8. Processing time is fixed or is known in advance.
Most parts require similar processing, although spe-
cific, required features for each model cause some
variation in actual work content. Due to this unique-
ness, parts require varying amounts of resources and
processing times.

9. All jobs are available at time 0. Normally, not all jobs are
available at the beginning of the study horizon. They
arrive throughout the study horizon.

In addition, the operating conditions for the steel doors
manufacturing process are different and more sensible
than classic configurations where operating conditions
can be irrelevant. For example:

Fig. 5 Operational validity

Table 3 Validation method

Output variables Input variables

Real system Conveyor speed Conveyor speed

0.036 m/s 0.03 m/s 0.05 m/s

Avg utilization (%) 17.39 17.97 18.25

Avg busy processing time (s) 40,922 39,975 40,964

Work in process (doors) 84 91 68

Throughput (doors/shift) 916 909 932

Real system Sealed silicon Sealed silicon

30 min 25 min 35 min

Avg utilization (%) 17.39 18.07 17.91

Avg busy processing time (s) 40,922 35,749 38,815

Work in process (doors) 84 113 118

Throughput (doors/shift) 916 886 881

Real system Drying Drying

30 min 25 min 35 min

Avg utilization (%) 17.39 18.22 18.15

Avg busy processing time (s) 40,922 40,938 40,871

Work in process (doors) 84 68 62

Throughput (doors/shift) 916 931 930

Real system (FIFO rule) Sequences (by complexity) Sequences (by simplicity)

Avg utilization (%) 17.39 15.23 19.63

Avg busy processing time (s) 40,922 35,516 40,724

Work in process (doors) 84 268 82

Throughput (doors/shift) 916 731 917

Real system (without off-duty hours) Shifts (8 off-duty hours) Shifts (4 off-duty hours)

Avg utilization (%) 17.39 16.97 20.30

Avg busy processing time (s) 40,922 33,515 41,127

Work in process (doors) 84 270 68

Throughput (doors/shift) 916 730 931
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a. Storage rules for the work in process on the workstations.
Normally, when a job finishes its process through a
machine, it continues to the next process in other ma-
chines, but some processes need to be done in batches. In
such a case, the job needs to wait until a certain number
of jobs have already come to the start of the next process.
While waiting, the operators stack the jobs and when the
process can finally continue, the operators take the jobs
one by one from the last to first modifying the original
sequence.

b. Transfer rules for raw material and work in process.
Usually, when a job is ready to go to another worksta-
tion or machine to start the next process, it simply goes,
but sometimes it has to wait until some load rule is
satisfied. This is common in the actual manufacturing
process, where the door’s transfer is done by dollies,
which cannot move until there is a minimum of ten
doors.

c. Load rules on the conveyor. Commonly, when a machine
is available, it can process another job. In the case of the
painting process, an elevated conveyor transfers doors and
frames to the cure oven. However, this does not always
happen. Although it contains more than one hundred
spaces (carriers) to load, they cannot be fully used due to
the size of doors or frames. The operators need to allow
some spaces in order to prevent contact between doors or
frames on conveyor curves. Those carriers are then idle
machines.

d. Startup policies. When some machines are turned on,
any job can be processed. There are also certain tools or
machines that need to reach some critical parameter,

such as the minimum temperature for operations to
begin.

e. Capacities. In many cases, operations personnel are avail-
able when they need to produce a given job, but the
manufacturing process can require different capacities
for given machines and workstations. Because of this,
personnel scheduling affects the actual capabilities of the
manufacturing process.

The steel door manufacturing process contains several
workstations associated with different products. Each type
of door goes through a different sequence of processing
steps; furthermore, the work content varies greatly at each
step. Unlike other manufacturing processes, once produc-
tion starts on the doors, the sequence may be changed,
storing it as work in process. When the manufacturing
process becomes overcommitted, parts must be construct-
ed with overtime or subcontracted in order to meet up-
stream demand, resulting in higher costs and longer lead
times.

The processing requirements of the jobs are:

& Specific workstations should be used for each job.
Nevertheless, this manufacturing process is flexible, and
some jobs can be processed in other workstations.

& Each job involves a set of operations.
& Sequences of operations vary noticeably from job to job.

Finally, the objective is to generate schedules ofN different
jobs that require processing on M workstations based on
different work shifts in a flexible manufacturing process of
steel doors to obtain the minimum level of work in process
through the interaction between simulation and SEDA.
Simulation is used to model the facility being studied, while
SEDA is used to guide the overall schedule search process to
identify the best performing ones.

4 Simulation model—for a steel doors manufacturing
shop

In order to avoid the use of theoretical assumptions that can
hardly be met and to try to capture the real operating condi-
tions on the manufacturing process mentioned, we do not omit
the global behavior of the process when solutions are

Fig. 7 Representation of an
individual

Fig. 6 Feasibility of operation

Int J Adv Manuf Technol (2014) 73:3–21 11



proposed. If this happens, it is not possible to ensure real
solutions that can be implemented. Therefore, we built a
simulation model that emulates the manufacture of the most
important kinds of doors sold by the company. The model
contains all the tasks performed by different machines in the
manufacturing process for each sort of product that is sched-
uled. Our simulation model included many types of details
that a manufacturing process presents: setup time, mainte-
nance programming, load and unload processing, packing
and unpacking materials, transferring of parts between depart-
ments, labor requirements for each machine or process, stor-
age rules in buffers, delay time in some areas, shifts, breaks,
and meals. All of these situations are present in the given
manufacturing process. Figure 3 shows a side of the final
assembly department.

Nevertheless, even if we were able to integrate operation
times and workflows in the model, it does not mean the model
is faithful to and representative of the real manufacturing

process. For this reason, we verified and validated the simu-
lation model.

We ran the simulation model under different conditions to
determine if its computer programming and implementation
are correct as an applying verification technique which is
known as the fixed values test [17, 18]. We decided to verify
the throughput as model results. It was verified against calcu-
lated a priori values. Figure 4 depicts previous descriptions in
three production departments.

The validation method developed for this case study was
based on Pita andWang’s [19] work which classifies the input
variables as a function of how they affect output variables.
The selected input variables are conveyor speed in painting,
process time of the sealed system in assembly, process time of
the drying system in washing, sequences, and work shifts. The
output variables are utilization average of all employees,
effective process time average of all employees, work in
process, and throughput. Table 3 shows the main results.

Fig. 9 Gantt chart of the solution
shown in Fig. 8

Fig. 8 Processing time data and a
feasible sequence
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From the results shown above, the work sequences and
off-duty hours before starting the work shift are a key
opportunity to improve the manufacturing process. This is
mainly because the amount of releases is not constant or
sufficient to keep the manufacturing process busy for a long
time, causing intermittent idle times. This characteristic is
sensitive to the actual manufacturing process. A good bal-
ance of off-duty hours helps to improve the output variables
values shown in the validation method described above, and
it includes the WIP. A combined approach using work
sequences, and off-duty hours was the purpose of this
research.

Furthermore, the validation of the simulation model was
realized statistically. We compared the results derived by the
model with real production in the same initial conditions,
satisfying statistical assumptions in the validation. Figure 5
depicts the information below.

5 SEDA—for a steel doors manufacturing shop

5.1 Solution representation

Any solution to the manufacturing process mentioned should
be a combination of operation scheduling decision, machine
assignment, and off-duty hours before starting the work shift.
Thus, a solution can be expressed by the processing sequence
of operations on the machines, and the assignment of opera-
tions on machines and the off-duty hours, which would be
the operators before starting their activities. In this paper, a
solution is represented by three vectors (operation sequence
vector, machine assignment vector, and off-duty hours
vector).

For the operation sequence vector, the number of elements
equals the total number of operations, where each element
contains a random value U[0,1], an important difference

Fig. 10 A feasible sequence with
off-duty hours

Fig. 11 Gantt chart of the
solution shown in Fig. 10

Fig. 12 Representation of an
individual to a valid operation
sequence
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between our approach and Wang et al.’s [6] work. For the
machine assignment vector, each element represents the cor-
responding selected machine for each operation. For the off-
duty hours vector, each element shows the off-duty hours,
which would be the operators before starting their activities on
the most important manufacturing departments on the shop.
To explain the representation, we provide an example by
considering a problem with four jobs, four machines, and

different off-duty hours possible as shown in Fig. 6. In
Fig. 7, the representation of an individual is illustrated.

To show a comparison between this approach and Wang
et al.’s [6] work, an example is provided. Figure 8 details the
fixed processing time for each job on each machine and a
feasible sequence. Figure 9 illustrates the Gantt chart of this
solution working at the same time on all machines. Figure 10
shows another feasible sequence, but it includes off-duty

Fig. 13 Communication SEDA–
simulation model
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Fig. 14 Integration SEDA and simulation model
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hours and its impact over work in process. Idle time can be
noted in Fig. 11. However, in the industrial environment
mentioned, the processing time is not fixed. Therefore,
Wang et al.’s [6] representation should not be directly applied.
The results may be totally different. Because of this, a simu-
lation model is used to tackle this drawback.

However, it is possible that, when a given job reaches
a workstation that remains off-duty, the job will have to
wait until the workstation starts production again,
converting the job to WIP. We sought as little WIP as
possible, given the operational, physical, and programmatic
restrictions.

5.2 Generation of the population

Initial population members are generated randomly in order to
enable a wide range of solutions [20].

5.3 Probability model

SEDA contains three different graph models. The first graph
model aims to determine an estimation of distribution model
to generate new offspring (operation sequence) using a subset
of 'm' selected sequences (individuals). In order to do this, we
adopted a continuous optimization procedure instead of a
discrete one to solve the scheduling problem. This is an
important difference between this approach and the current
research. The advantage of this representation for each indi-
vidual, through continuous values, is that they do not have
direct meaning to the solution they represent. There is no
problem if each individual does not explicitly shows its infor-
mation on the sequence of jobs to be processed. It is not
necessary that the probabilistic model be updated each time
a job is assigned in the sequence, and it is not necessary to
make any modification in the sampling process. Rudolph [21]

Table 4 Comparison of results for each average

H0:μ1=μ2
GA SEDA GA SEDA α=0.10

Trial Best Best μ1 μ2 μ1−μ2 |Zc|≤1.645

1 2.66 3.50 4.97 6.37 −1.40 16.64*

2 3.21 2.56 5.30 5.35 −0.05 0.58

3 2.93 0.91 5.29 5.63 −0.34 3.37*

4 3.31 0.00 5.23 4.14 1.09 11.47*

5 2.66 0.03 5.01 4.09 0.92 9.175*

6 2.66 0.00 4.95 4.15 0.80 8.160*

7 2.66 0.00 4.90 4.16 0.74 7.580*

8 2.66 0.00 5.03 4.19 0.85 8.450*

9 2.66 0.39 5.01 4.15 0.87 8.785*

10 2.66 0.03 4.91 4.09 0.81 8.381*

11 2.66 0.00 4.98 4.20 0.78 7.931*

12 2.66 0.03 4.98 4.05 0.93 9.447*

13 2.66 0.03 5.08 4.14 0.94 9.402*

14 2.66 0.00 5.02 4.14 0.87 8.906*

15 2.66 0.03 4.96 4.11 0.85 8.994*

16 2.66 0.00 4.98 4.18 0.80 8.430*

17 2.66 0.00 5.05 4.06 0.99 9.730*

18 2.66 0.21 5.09 4.10 0.99 9.946*

19 2.66 0.00 5.02 4.14 0.88 8.927*

20 2.66 0.00 4.98 4.24 0.74 7.620*

21 2.66 0.03 5.07 4.32 0.76 7.390*

22 2.66 0.00 4.89 4.17 0.72 7.603*

23 2.66 0.00 4.97 4.17 0.80 8.248*

24 2.90 0.00 4.89 4.31 0.58 5.943*

25 2.66 0.03 5.02 4.21 0.81 8.089*

24 / 25

μ the average

Table 5 Comparison of results for each variance

H0:σ1
2=σ2

2

GA SEDA GA SEDA α=0.01
Trial Best Best σ1

2 σ2
2 σ1

2/σ2
2 Fc < 0.545 or

Fc > 1.832

1 2.66 3.50 2.926 2.903 1.0079 1.0079*

2 3.21 2.56 3.124 2.661 1.1738 1.1738*

3 2.93 0.91 2.763 5.553 0.4976 0.4976

4 3.31 0.00 2.377 5.028 0.4727 0.4727

5 2.66 0.03 3.307 4.933 0.6704 0.6704*

6 2.66 0.00 2.848 5.050 0.5640 0.5639*

7 2.66 0.00 2.482 5.284 0.4698 0.4698

8 2.66 0.00 3.116 5.150 0.6050 0.6050*

9 2.66 0.39 2.977 5.053 0.5891 0.5891*

10 2.66 0.03 2.932 4.828 0.6072 0.6072*

11 2.66 0.00 2.803 5.149 0.5443 0.5443

12 2.66 0.03 3.055 4.881 0.6258 0.6258*

13 2.66 0.03 3.267 5.004 0.6529 0.6529*

14 2.66 0.00 2.969 4.990 0.5950 0.5950*

15 2.66 0.03 2.743 4.601 0.5962 0.5962*

16 2.66 0.00 2.897 4.541 0.6380 0.6380*

17 2.66 0.00 3.223 5.323 0.6055 0.6055*

18 2.66 0.21 3.214 4.936 0.6511 0.6511*

19 2.66 0.00 3.049 4.935 0.6178 0.6178*

20 2.66 0.00 2.759 5.036 0.5478 0.5478*

21 2.66 0.03 3.003 5.662 0.5303 0.5303

22 2.66 0.00 2.581 4.919 0.5246 0.5246

23 2.66 0.00 2.913 4.891 0.5955 0.5955*

24 2.90 0.00 2.704 5.152 0.5248 0.5248

25 2.66 0.03 3.006 5.176 0.5807 0.5807*

18 / 25

σ2 the average
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and Bean and Norman [22] can be consulted about continuous
optimization procedures. We used the MIMICC

G algorithm to

build the first probabilistic graph model introduced by
Larrañaga et al. [23]. It is an adaptation of the MIMIC algo-
rithm presented by De Bonet et al. [24] to continuous do-
mains. Once the individuals have been generated from the
algorithm MIMICC

G, they must be decoded to be represented
as a valid operation sequence. Thus, we need a method to
decode these real vectors into discrete vectors. A fixed integer
number is assigned for each operation. Each fixed integer
number is associated with a job. A sort on the continuous
values of each individual is done. Assigning each continuous
value to the corresponding fixed integer number that belongs
to each operation and setting each fixed integer number to a
job to finish. Figure 12 details an example of a real vector and
its decoding.

The second probabilistic graph model aims to determine
an estimation of distribution model to generate new off-
spring (machine assignment) using a subset of 'm' selected
assignments (individuals). To obtain the estimation, we
used the COMIT algorithm introduced by Baluja and
Davies [25].

The third probabilistic graph model aims to determine an
estimation of distribution model to generate new offspring
(off-duty hours work shift) using a subset of 'm' selected off-
duty hours work shift (individuals). Although the number of
hours is defined for any shift based on current legal guidelines,
the start time of the shift is not, so we aim to generate
individuals representing the off-duty hours that would be the
operators before starting their activities. Again, we used the
COMIT algorithm to obtain the estimation.

5.4 Diversity

SEDA uses a Tabu search method in order to avoid losing
diversity on the evolutionary progress. The Tabu search meth-
od is based on Pinedo’s [26] research.

Table 6 Comparison of results for each algorithm

GA SEDA GA SEDA GA SEDA
Trial Best Best Worst Worst Reliability Reliability

1 2.66 3.50 11.05 11.28 1 3

2 3.21 2.56 11.19 11.18 1 1

3 2.93 0.91 11.28 11.04 1 1

4 3.31 0.00 10.85 11.19 1 2

5 2.66 0.03 11.05 10.91 1 4

6 2.66 0.00 11.05 11.19 1 4

7 2.66 0.00 11.05 11.19 1 3

8 2.66 0.00 11.05 11.19 1 2

9 2.66 0.39 10.96 11.19 3 5

10 2.66 0.03 11.05 11.19 3 2

11 2.66 0.00 11.05 11.19 1 2

12 2.66 0.03 11.05 11.05 1 7

13 2.66 0.03 11.05 11.19 1 6

14 2.66 0.00 11.05 11.19 1 3

15 2.66 0.03 10.89 10.91 1 2

16 2.66 0.00 10.96 11.19 2 2

17 2.66 0.00 11.05 11.05 2 2

18 2.66 0.21 11.05 11.19 2 3

19 2.66 0.00 11.05 10.43 1 2

20 2.66 0.00 10.96 11.19 1 2

21 2.66 0.03 11.05 11.19 2 1

22 2.66 0.00 10.89 11.19 1 2

23 2.66 0.00 11.05 11.19 1 3

24 2.90 0.00 10.96 11.05 1 4

25 2.66 0.03 11.05 11.05 2 4

34 / 25 72 / 25

Reliability: number of times that the best value is obtained

Fig. 15 Percentiles chart, trials-
GA
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5.5 SEDA–simulation model

The output of the simulation model, the work in process level of
the steel doors manufacturing process, is used by SEDA to
provide feedback on the progress of the search for the best
solution. This in turn guides further input to the simulationmodel.

In order to get communication between SEDA—written in
DevC++®—and the simulation model—built on Delmia
Quest® R20—and to get feedback on progress, some com-
mands from the Batch Control Language (BCL) provided
from Delmia Quest® were used for the objective. Figure 13
details the overall process.

Figure 14 shows the simulation optimization approach
proposed.

6 Results and comparison

SEDAwas built to be functional on the specific manufacturing
process mentioned; therefore, we consider evaluating the
SEDA in the same industrial environment.

A GA is proposed as a benchmark for comparison with the
SEDA scheme. GA works with tournament selection. The

“edge recombination operator” is used as a cross operator
based on Whitley et al. [27], and a mutation operator changes
jobs among different positions.

We used a Dell® Vostro® 3500 computer, Intel® CoreTM i3
processor, 2.6 GHZ, 4 GB of RAM, Windows® 7 for 64 bits
to run each algorithm.

To account for the stochastic nature of the shop, we ran 25
trials for both algorithms. Each trial contains 11 generations;
75 individuals belong to each generation.

We established a workload to evaluate and find the best
schedule. Our experiments were based on production of 1,000
doors. The workload mentioned contains different orders, due
dates, and kinds of doors produced in a workweek, replicating
the actual manufacturing process. Each production order cor-
responding includes different numbers of jobs. The arrival
times of the production orders are indeterminable.

As a response variable for the experiment, we measure the
relative percentage increase (RPI)

RPI cið Þ ¼ ci −c�ð Þ=c� � 100 ð10Þ

where ci is the work in process value obtained in the ith
replication by a given algorithm configuration, and c* is the

Fig. 16 Percentiles chart, trials-
SEDA

Fig. 17 Performance GA
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best objective value found by any of the algorithm configura-
tions. Note that for this problem, there are no known effective
exact techniques and comparing against an optimum solution
is not possible.

Table 4 details the average obtained for each trial. We
analyze whether there is a statistically significant difference
between averages of both algorithms.

As we can see in Table 4, there is a statistically significant
difference between the averages of both algorithms. The per-
formance of SEDAwas superior in 24 of the 25 trials with α=
0.10 of significance level.

Table 5 shows the variance obtained for each trial. We
analyze whether there is a statistically significant difference
between variances of both algorithms.

As we can see in Table 5, there is no statistically significant
difference between variances of both algorithms. The perfor-
mance was the same in 18 of the 25 trials with α=0.01 of
significance level. We consider that the stability of both algo-
rithms is practically the same (72 % of the time).

Table 6 details the reliability obtained for each trial. We
analyze the amount of times that both algorithms got the best
value in each trial.

As we can see in Table 6, there is difference between the
reliability of both algorithms. The performance of SEDA
was better in 111 %. It found 38 more times better value
than GA.

Figure 15 shows the individuals generated by GA in the
trails 5, 10, 15, and 20 through a percentiles chart.

For all trials, GAwould converge and got its best value for
the response variable, RPI at around 3.02

Figure 16 shows the individuals generated by SEDA in the
same trials through a percentiles chart.

SEDA’s trials were different; these converged and got its
best value below 3.00 for the response variable, RPI.

Figure 17 shows the performance by GA on each trial.
In all, GA's trials had close median values, around 5 RPI,

and the search was concentrated between 2.5 and 6 RPI. The
plus symbol (+) indicates where the median is located.

Figure 18 shows the performance by SEDA in each trial.
SEDA’s performance was different. It got median

values around 4 RPI, but it could achieve better values
against GA in almost all trials. SEDA could search in a
more promising area. The plus symbol (+) indicates where
the median is located.

The experimental results were analyzed using the analysis
of variance (ANOVA) method. In the experiment, the main
assumptions were checked and accepted. Table 7 details that
there is a statistically significant difference between the
algorithms.

Figure 19 shows the overall behavior between both
algorithms, and Fig. 20 plots the performance metric on
each trial.

Fig. 18 Performance SEDA

Table 7 Analysis of variance
ANOVA

Source of variation SS df MS F pvalue F crit

Sample 50.3280 1 50.328 19.0555 1.28934E-05 3.84288

Generations 4,846.39 43 112.706 42.6738 0 1.38108

Interaction 2,660.61 43 61.874 23.4273 5.274E-169 1.38108

Within group 17,199.0074 6,512 2.641

Total 24,756.344 6,599
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7 Conclusions

Although the traditional scheduling problem has been solved
from an academic perspective, its implementation in industrial
environments has been a difficult task because there are many
assumptions to satisfy. Based on the experimental results
shown, we confirmed that an appropriate modeling of the
most important variables that affect the performance of the
process should be considered in the proposed solution. We
reach the conclusion that the shop performance can be

improved if different machines are assigned to different sched-
ules. Although some assumptions of the FJSP could not be
met in the manufacturing process studied, because a number
of the assumptions are not consistent, the simulation model
was able to tackle this situation by incorporating the real
operation conditions of the manufacturing process. The reason
is that these are more sensitive than classical configurations.
The validation method allowed for identification of the key
opportunity to improve the manufacturing process, that is,
work sequences and off-duty time for each machine.

Fig. 19 Global performance for
both algorithms

Fig. 20 Performance metric for each trial
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Using a continuous EDA was not necessary to make any
modifications in the sampling process in the processing se-
quence of operations on the machines, as is generally required
by other algorithms. It allowed for better trust in the data
against the GA. We consider using three graphical models,
while most EDAs do not apply more than one model. It
permitted handling the most important variables of the
manufacturing process studied in the sampling mechanism,
which was refined by the Tabu search method. This strategy
was created to avoid losing diversity in the evolutionary
progress of the algorithm. We conclude that the simulation
optimization can be an efficient mechanism to handle different
manufacturing conditions where there are diverse variable
interactions such as the FJSP.

Finally, this research contributes using an EDA as an
optimization method for any simulation language.
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